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The ground-state description of the optical polaron versus 
the effective dimensionality in quantum-well-type systems 

T Yildirlm and A Ergelebi 
Department of Physics, Middle EBst Technical Univagity, 06531 Ankara, Turhy 

Received 19 July 1990 

Abstract. Within the framework of the strong-coupling polaron theory the ground- 
state binding energy and the effective m s  of the electron-Lo phonon system is 
retrieved as a function of the effective dimensiondity in a quantum-well confinement. 
The geometry we use is a threedimensional parabolic potential box, the harrier slopes 
of which C M  he tuned so as to yield a unified bacterization interpolating between 
the bulk, the quasi-two- and onedimensional limits as well as the quantum-well box 
-e. 

1. Introduction 

Recently, increasing attention has been focused on the study of polarons of reduced 
dimensionality in the context of quantum-well confined structures. Particular empha, 
sis has been devoted to the strict twwdimensional (2D) optical polaron consisting of 
a surface electron interacting with the LO branch of the surface phonon modes of an 
ionic or polar crystal (Huybrechts 1978, Wu et a1 1985, Larsen 1987). Another aspect 
of the 2D characterization of the optical polaron is that it finds its relevance as an 
approximating model accounting for the almcst-twc-dimensional dynamical behavior 
of an electron within the confining barriers of a thin semiconductor quantum well and 
yet interacting with the bulk LO phonon modes of the well material (Das Sarma and 
Mason 1985, Peeters et a1 1987). The common theoretical prediction reached by all 
the works pertaining to 2D-polaron properties is that in switching from the bulk to the 
case of two-dimensionally confined structures the electron-phonon coupling gets sub 
stantially stronger and, consequently, certain polaron quantities scale to considerably 
pronounced values (Peeters et a1 1987). The polaron binding energy, for instance, is 
deepened by a factor of T/Z in the weak-coupling regime, and by 31r2/8 within the 
framework of the strong-coupling approximation. The same feature is true for other 
quantities l i e  the effective polaron mass or the mean density of phonons clothing the 
electron. 

The purpose of this paper is to display a unifying and comprehensive theoretical 
presentation yielding an explicit track of the electron-phonon interaction effects as 
a function of the effective dimensionality. For the present we focus our discussions 
on the strongly coupled polaron in its lowest bound state in a confined medium. We 
utilize a simple model consisting of an optical polaron within an anisotropic harmonic 
oscillator-type confining potential given in usual polaron units ( h  = 2m = wLo = 1) 
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by 

V(p,  2 )  = +(w:p2 + w y )  

where 

wi = (k i /nw&, )1 /2  

in which k i ( i  = 1,2) denotes the respective force constants in the z ,y  and the z 
directions. Such a choice for the confining potential is appealing in the sense that the 
effective dimensionality can be adjusted by varying the dimensionless frequencies w 1  
and w, so as to provide a broad insight into the effect of degree of confinement on the 
ground-state property of the polaron. By shifting w1 and w, from zero to values much 
larger than unity one can trace the transition from the hulk to  .he two-dimeubional 
slab-like confinement (wl = O,w, > 1) or else, to the quasi-onedimensional quantum 
well wire (QWW)-like behaviour (wl >> l r w 2  = 0). 

2. Theory and results 

Under the traditional displaced oscillator transformation of the strong-coupling for- 
malism 

the polaron Hamiltonian is 

where P = ( p , p , )  and r denote the electron momentum and position, and fQ is 
a variational parameter describing the depth and the profile of the lattice potential 
&.ell induced by the mean charge density fluctuations of the electron. The interaction 
amplitude is related to the electron-phonon coupling constant o( and the phonon 
wavevector Q = (q, q,) through VQ = &/Q. 

Compatible with the anisotropy in the potential (1) we introduce different ad- 
justable parameters A, and A, for the dynamic description of the electron. We implic- 
itly assume Gaussian spreads by utilizing the linear combination of the coordinates 
and momenta of the electron as operators: 

where the index p refers to the L' and gj directions 
Defining the ground state 10) by 
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and performing the minimization of Eg = (OlH'lO) with respect to f Q  we obtain 

and for the polaron binding energy, relative to the subband level, we have 

Ep = w1 + $wZ - Eg 
where 

For wl  = w2 = 0 the binding energy is readily available. In this limit we obtain 
XI  = A, = 4a2/97r, and cy) = a2/3n, i.e. the bulk'value. When either w1 or w2 is 
comparable with the polaron size, the boundary effects start to become significant and 
the system enters a regime of reduced dimensionality. Setting w1 = 0 and increasing 
w, we obtain the binding energies in a QzD slab-like structure and, in particular, when 
w, becomes infinite we arrive at the strict ZD-characterization of the polaron wherein 
A, = w, + 03, XI = ?ra2/4, and for the binding energy we obtain E$?) = (8/?r)a2. On 
the other hand, deleting the confining potential along the z axis totally (w, = 0) and 
fixing w1 at non-zero finite values, the theory reflects the QID description of the optical 
polaron in a QWW-like tubular structure. In figure 1 we display the binding energy as a 
function of the degree of confinement, i.e. as a function of either w1 or w,, respectively 
for the wire  and slab-like configurations. We note that with increasing barrier slopes 
of the confining potential, the binding energy for the wire geometry rapidly becomes 
much larger than in the QzD configuration, which follows essentially from the fact 
that in the wire geometry the polaron cloud is squeezed towards the wire axis in aU 
transverse directions resulting in a much stronger effective electron-phonon coupling 
than for the slab-like configuration. A more general and comprehensive presentation 
of how the binding becomes enhanced by the reduction in the effective dimensionality 
is given in figure 2 where we provide a total overview of the binding energy in the 
overall range of w1 and w, interpolating between all extremes, including the quantum- 
well box (QWB) case. It is observed that in the case when the ratio wl/w2 approaches 
unity either from above or from below (respectively for w1 being held fixed and wz 
varied, or w, held fixed and wl varied), the binding becomes much deeper than in 
the Q2D or Q l D  limits since now the polaron becomes squeezed in all directions. For 
instance, for the QZD confinement with a = 5 and w, = I we obtain e p / c T )  = 1.16. 
For the case of a wire with w1 = 1 the binding gets deeper by a factor of about 1.33 
and for a spherically symmetric confinement (wl = w2 = 1) we have cp/c?) = 1.49. 
The corresponding values when (Y = 5 and w1 and/or w, = 10, are 1.73, 2.64 and 3.66. 

The variational model used in this work can be extended to yield the effective 
polaronic mas8 in various limits of the confinement geometry. The procedure consists 
of the variation of the Hamiltonian under the constraint that tbe relevant component 
of the total momentum 

Q 
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Figure 1. The binding energy against the de- confuvment for the slablike 
( w ~  = 0) and the wire-like (w? = 0) eonfiwations. The horizontal brohn line refers 
to the energy value in the 2D limit. 
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Figure 2. The binding energy ap a fution of the effective dimensionality. The 
succession of curves a, h, c, d, e and f we for fixed values of either WI or w2 = 
5,20,50,100,200,500 with ~ ( U Z )  heldfixedandy(wl) variedin the right (1eft)part 
of the f i p .  The central vertical line refers to the spherically symmetricconfinement, 
where- the intercepts on theleft and the right margins give the binding energy value 
for the slab and the wire geometris. (a = 5 ) .  

is conserved. In what follows we shall take (Ole-sPeslO) = 0. 
We first refer to the P direction. For the electron momentum we write 

r2 ) t 6: t P, = -(bz d% 2 

with r r  introduced as a further variational parameter in the theory so as to account 
for the compwite inertia of the electron dressed by the cloud of virtu4 phonons. 



Ground-state description of the optical polaron 1 2 7 5  

Minimization of the functional 

$ ( A l r  A2; oz, x z ,  f Q )  (OIe-'(H - nP,)eslo) (11) 

f Q  = VQ"Q(l - v a q x ) - l  

yields R, = uz/&, and equation (6) scales to 

(12) 

wherein the Lagrange multiplier v, is to be identified as the polaron velocity (see, e.g. 
Parker et al 1974). 

Substituting the optimal fits for ?ra and fQ back into equation (11) we find 

$(A1,A2;uz) = (OlX'lO) - iv;  + cv,2u;,[1- (1 - urqI) - ' ] .  ( 1 3 )  
Q 

For the case where (Ole-"P,e'lO) = 0, the last two terms in this expression are 
identically zero which, however, should not be disregarded a priori in order to keep 
trace of the effective mass. Retaining terms up to second order in v z ,  equation (13) 
can be written alternatively as 

from which we identify the polaronic mass mp) as 

= 1 + ~ ~ ( A ~ A ~ / R ) " ~ ( A ,  - X,)-'[I - (AJA, - I)-'" tan-'(A2/Al - I ) ' / ~ ] .  

( 1 5 )  

In order to calculate the mass in the directions perpendicular to the z axis we retrieve 
the same formulation, where now p, is replaced by the transverse momentum, i.e. 
p, = + b i  + r , ) , p  = z ,  y,  and the corresponding functional to be minimized 
is 

$(Al,  A , ; v , . x ,  f Q )  (Ole-s H - U p - U .  Tqa&ap)eslO). ( 1 6 )  ( 
With optimal .x and f q ,  equation (16), up to order w2, conforms to 

( 1 7 )  $(A,,A,;v) = (OlH'lO) - $2 - C ( v . q )  2 VQUQ 2 2  

Q 

implying 

mp)/m= 1 +2Cq2v$; 
Q 
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for the polaronic mass in the z ,y  directions. 
Rom equation (15) or (18) the bulk polaron mass can be achieved analytically 

as a function of a simply by considering the asymptotic limit where both A, and A, 
approach the same value, A = 4a2/9a, which minimizes the ground-state energy. For 
the 3D mass we thus obtain 

T Yddrnm and A Erqelebi 

A further well established extreme is the strict two-dimensional characterization of the 
polaron (wl = O,w, > 1) where in equation (18) A, -+ 00 and A, = ?ra2/4, yielding 

In figure 3 we display the effective mass as a function of either w, or w 2 ,  respectively, 
for when the polaron is taken to be bounded within QWW-like (wz = 0) or Q2D slab- 
like (w ,  =O) potentials. Starting from the bulk value (19), the effective polaron mass 
in the Q1D and QzD geometries becomes considerably pronounced with shrinking wire 
radius or decreasing slab width. In the slab configuration the effective mass displays 
an asymptotic profile and eventually conforms to the limiting value (20), whereas 
in the tubular confinement the enhancement in the mass is at  a much faster rate 
accompanied by an ever growing density of virtual phonons. 
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Figure 3. The effective polaron mass versus the degrK of confinement for the slab- 
like (wl = 0) and the wire-like (w = 0) gcomelries. The horizontal broken Line refers 
to the polaron m-s in the strict ZD-limit. 

In this report we have retrieved the basic qualitative features of the strongly cou- 
pled polaron in confined structures and have given a wide theoretical insight into the 
electron-phonon interaction effects as a function of the effective dimensionality. A 
remark concerning the reliability of the values derived in this work is that  in actual 
materials of interest the electron-phonon coupling is rather weak and consequently 
the theory we have adopted fails to reflect a totally dependable characterization of 
the problem. One further remark is that high degrees of localization in reduced di- 
mensionalities lead to an enhancement in the effective phonon coupling which in turn 
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brings about the possibility that, in spite of a small coupling constant, the problem 
may as well have a strong-coupling counterpart coming from confinement effects. The 
problem in its most general form is therefore somewhat involved and requires an in- 
terpolating theory accounting for both the strong- and weak-coupling aspects all at 
once. 
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